Log-det approximation based on uniformly distributed seeds and its application to Gaussian process regression
نویسندگان
چکیده
منابع مشابه
Multiresolution Kernel Approximation for Gaussian Process Regression
(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks a...
متن کاملAsynchronous Distributed Variational Gaussian Process for Regression
Gaussian processes (GPs) are powerful nonparametric function estimators. However, their applications are largely limited by the expensive computational cost of the inference procedures. Existing stochastic or distributed synchronous variational inferences, although have alleviated this issue by scaling up GPs to millions of samples, are still far from satisfactory for real-world large applicati...
متن کاملconstruction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
Distributed Gaussian Process Regression Under Localization Uncertainty
In this paper, we propose distributed Gaussian process regression for resource-constrained distributed sensor networks under localization uncertainty. The proposed distributed algorithm, which combines Jacobi over-relaxation and discrete-time average consensus, can effectively handle localization uncertainty as well as limited communication and computation capabilities of distributed sensor net...
متن کاملLaplace Approximation for Logistic Gaussian Process Density Estimation and Regression
Logistic Gaussian process (LGP) priors provide a flexible alternative for modelling unknown densities. The smoothness properties of the density estimates can be controlled through the prior covariance structure of the LGP, but the challenge is the analytically intractable inference. In this paper, we present approximate Bayesian inference for LGP density estimation in a grid using Laplace’s met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.08.012